Sequences and Series Cheat Sheet

Noah Pinel

University of Calgary — March 14, 2022

Geometric Series

$$\sum_{n=1}^{\infty} ar^{n-1} = \begin{cases} \frac{a}{1-r} & |r| < 1\\\\Diverges & |r| \ge 1 \end{cases}$$

Harmonic Series

 $\sum_{i=1}^{\infty} \frac{1}{n}$ This is allways Divergent!

Divergence Test

If $\lim_{x\to\infty} a_x \neq 0$, Then $\sum a_n$ Diverges. Make sure not to misuse this test. This is only for testing Divergence, this does not \Rightarrow convergence

Integral Test

Suppose f(x) is a continuous, positive and decreasing function on the interval, $[K,\infty)$ and that $f(n) = a_n$ then,

1. if
$$\int_{k}^{\infty} f(x)dx$$
 is Convergent so is $\sum_{n=k}^{\infty} a_n$
2. if $\int_{k}^{\infty} f(x)dx$ is Divergent so is $\sum_{n=k}^{\infty} a_n$

The lower bound of the integral must be the same as the start of the index for $\sum_{n=k}^{\infty} a_n$

Important to note that the integral test does not give the value of the Series, it simply tells if its Converges/Diverges

Comparison Test

if
$$0 \le a_n \le b_n$$
 Then:

$$\sum_{n=1}^{\infty} a_n \text{ Diverges} \Rightarrow \sum_{n=1}^{\infty} b_n \text{ Diverges}$$

$$\sum_{n=1}^{\infty} b_n \text{ Converges} \Rightarrow \sum_{n=1}^{\infty} a_n \text{ Converges}$$

Limit Comparison

For $\sum a_n$ and $\sum b_n$, where both series contain only positive terms.

 $\label{eq:lf_states} \begin{array}{l} \text{If},\\ \lim_{n \to \infty} \frac{a_n}{b_n} = C > 0 \end{array}$

Then Either both a_n, b_b Converge or both a_n, b_b Diverge

Alternating Series Test

For $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ with 1) b_n is decreasing 2) b_n is positive 3) $\lim_{n \to \infty} b_x = 0$

Then the series Converges.

Absolute Convergence

$$\sum_{n=1}^{\infty} |a_n| \text{ Converges} \Rightarrow \sum_{n=1}^{\infty} a_n \text{ Converges.}$$

Absolute Convergence:

$$\sum_{n=1}^{\infty} |a_n|$$

Conditional Convergence:

$$\sum_{n=1}^{\infty} a_n$$
 Converges.

But

 $\sum_{n=1}^{\infty} |a_n|$ Diverges.

Ratio Root Test

$$\begin{split} 1)_{n \to \infty} &|\frac{a_n + 1}{a_n}| = L < 1 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ is Absolutely Convergent.} \\ 2)_{n \to \infty} &|\frac{a_n + 1}{a_n}| = L > 1 \text{ or Diverges} \Rightarrow \sum_{n=1}^{\infty} a_n \text{ Diverges.} \\ 3)_{n \to \infty} &|\frac{a_n + 1}{a_n}| = 1 \Rightarrow \text{ Inconclusive.} \end{split}$$

Root Test

1) $\lim_{n \to \infty} \sqrt[n]{a_n} = L < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ is Absolutely Convergent. 2) $\lim_{n \to \infty} \sqrt[n]{a_n} = L > 1$ or Diverges $\Rightarrow \sum_{n=1}^{\infty} a_n$ Diverges. 3) $\lim_{n \to \infty} \sqrt[n]{a_n} = 1 \Rightarrow$ Inconclusive.

Power Series

$$\sum_{n=0}^{\infty} c_n (x-a)^n$$
 Where c_n is a Sequence.

Options for $\sum_{n=0}^{\infty} c_n (x-a)^n$:

- 1) Diverges unless x = a
- 2) Converges $\forall x$
- 3) Radius > 0 where:
 - i. Converges for |x a| < R
 - ii. Diverges for |x a| > R
 - iii. More work needed when |x a| = R

MacLaurin Series

If f(x) has a Power Series Representation: $f(x) = \sum_{n=0}^{\infty} c_n x^n$, where |x| < RThen $c_n = \frac{f^{(n)}(0)}{n!}$

Taylor Series

If f(x) has a Power Series Representation: $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$, where |x-a| < RThen $c_n = \frac{f^{(n)}(a)}{n!}$